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11.1 Introduction 
 
This chapter continues the discussion of zonal mean state of the atmosphere that was started 
in chapter 7 and continued at the end of chapter 10. Here we focus especially on the quasi-
geostrophic interpretation of the role of large scale baroclinic eddies and planetary waves in 
determining the zonal mean meridional circulation in the mid-latitudes and in altering the 
zonal mean zonal flow, a topic that is referred to as “wave-mean flow interaction”. 
 The meandering of the jet in middle latitudes around the hemisphere is determined 
mainly by mountains, by thermal contrasts between land and sea, by baroclinic instability in 
the troposphere and by potential vorticity sources and sinks due to latent heat release in 
large-scale precipitation systems. In other words, the wave sources are located exclusively at 
the Earth’s surface or in the troposphere. This leads to a Rossby wave-pattern in the 
troposphere with quite a lot of variability in it. This fact is illustrated in the Hövmoller 
diagrams of the meridional wind, averaged between 40°N and 60°N, shown in figure 11.1  
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FIGURE 11.1. Time evolution of the meridional component of the velocity, averaged between 40°N and 60°N, 
as a function of longitude at 10 hPa (upper panel) and at 250 hPa (lower panel) for the period 1-27 November 
2002, based on daily mean NCEP-2 reanalysis. The contour interval is 10 m s-1. Red (blue) contours 
correspond to poleward (equatorward) motion. Slanted solid straight lines indicate a succession of maximum 
development of meridional flow, characterizing a group of waves. Dashed lines are lines of constant phase. 
The group speed is nearly 20 m s-1, 3 times the phase speed of the individual troughs and ridges embedded in 
the group or packet of waves. The most energetic wave activity at 250 hPa is observed in the vicinity and to the 
east of the Rocky mountains. New waves develop downstream of a wave packet, while mature waves die at the 
upstream end of the wave packet. This is a characteristic of dispersion (Box 1.14). Case taken from the book 
by Wallace and Hobbs (2006) (see the book list at the end of this chapter). Source of the data: 
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html. 
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(see the original Hövmoller diagram in figure 1.112). At 250 hPa (about 10 km) (the lower 
panel of figure 11.1) the dominant longitudinal wavelength of the waves is 60 to 70°. At 
50°N this is equivalent to a longitudinal wavelength of about 5000 km. In accordance with 
the linear theory of Rossby-wave propagation (section 1.34) the wave group (indicated by 
the solid lines) propagates faster in eastward direction than the phase (indicated by the 
dashed lines). The wave energy (proportional to the air density multiplied by the velocity 
squared) in the troposphere decreases markedly in the middle and higher stratosphere. At 10 
hPa (about 30 km) (the upper panel of figure 11.1) wave-activity is not only weaker than in 
the troposphere, but also of much larger horizontal scale. The dominant waves at 10 hPa 
have a longitudinal wavelength of more than 10000 km. The relatively short waves do not 
seem to penetrate into the stratosphere. This is why the Polar winter cyclonic stratospheric 
vortex is relatively axisymmetric. In summer the anticyclonic stratospheric vortex is even 
more strongly axisymmetric (figures 7.3 and 7.4). This suggests that vertical propagation of 
Rossby waves from the troposphere into the stratosphere is practically prohibited in summer. 
 The following 2 sections present a theory that explains these observations. This theory, 
which was developed by Charney and Drazin1, is based on the quasi-geostrophic potential 
vorticity equation. Section 11.2 is devoted to deriving the quasi-geostrophic potential 
vorticity equation. Section 11.3 presents the theory of vertical planetary wave propagation, 
demonstrating that wave-propagation is influenced very strongly by the zonal mean state. 
The reverse influence, i.e. the influence of eddies and waves on the zonal mean state, is the 
subject of the remaining sections in this chapter. We’ll see that the existence of the Ferrel 
cell is principally due to the reduction of the zonal mean temperature gradient by the 
meridional eddy heat flux. The final sections of this chapter are concerned with a theory of 
the Brewer-Dobson circulation (figure 10.22). This theory, which envisions the three-
dimensional transport of tracers, such as water vapour and ozone, as being the result of a 
two-dimensional circulation in the meridional-vertical plane, leads to some very interesting 
and simple insights into the interaction between dynamics and diabatics (radiation), the 
details of which are the subject of chapter 12. 
 
 
11.2 Quasi-geostrophic potential vorticity equation 
 
The quasi-geostrophic vorticity (1.251) and thermodynamic equations (1.316) (with J=0) 
can be expressed as follows. 
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where, repeating eq. 1.317, the static stability  parameters, 
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α
c p

−
∂T
∂p

.        (11.2) 

                                                
1 Charney, J.G. and P. Drazin, 1961: Propagation of planetary scale disturbances from the lower atmosphere 
into the upper atmosphere. J.Geophys.Res.,  66, 83-109. 
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(Beware!: in this chapter  σ is not isentropic density). Defining  
 

€ 

χ ≡
∂Φ
∂t
,           (11.3) 

 
we express (11.1a) as (remember: f=f0+βy and f0vg=∂Φ/∂x) 
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Now, multiplying (11.1b) by f0

2/σ and using (11.3) we obtain 
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Differentiating this equation with respect to p, and combining the result with (11.4) in order 
to eliminate ω, we obtain 
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This is the geopotential tendency equation. Half-way the twentieth century the 
geopotential tendency equation was an important equation of dynamical meteorology. It was 
used to diagnose and understand development of cyclones and anticyclones in mid-latitudes. 
The geopotential tendency equation is an elliptic partial differential equation, similar in 
structure to the omega equation (9.31). The left hand side is roughly proportional to -χ (see 
the reasoning below eq. 9.31). The right hand side (r.h.s.) of (11.5) represents the “forcing” 
of the geopotential tendency. The first and second term on the r.h.s. of (11.5) are referred to, 
respectively, as “advection of vorticity” and “differential temperature advection”. The 
second term on the right hand side of (11.5) can be expressed as 
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The second term on the r.h.s. of this equation is equal to zero because the thermal wind, 
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is parallel to the isotherms (section 1.35), while  
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obviously, is perpendicular to the isotherms. Therefore, the geopotential tendency equation 
becomes 
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With (11.3) this can also be written as  
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where 
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∂
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σ
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⎝ 
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Eq. 11.6 is the quasi-geostrophic potential vorticity equation and q is known as the quasi-
geostrophic potential vorticity. The first term on the r.h.s. of the definition of q (eq. 11.8) 
represents the relative vorticity, the second term represents the planetary vorticity and the 
last term represents the effect of static stability on the quasi-geostrophic potential vorticity. 
The units of q are [s-1]! 
 
 
Box 11.1 A model based on quasi-geostrophic potential vorticity inversion 
 
Equation 11.7 is a very powerful equation for describing the adiabatic dynamical evolution 
of the atmosphere. Assuming, for mathematical simplicity, that σ is constant, a dynamical 
model of the atmosphere can be based on the following four equations. 
 

€ 

q ≡ 1
f0
∂2Φ

∂x2
+
1
f0
∂2Φ

∂y2
+ f0 + βy +

f0
σ
∂2Φ

∂p2
;      (1)
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∂q
∂t

= −ug
∂q
∂x

− vg
∂q
∂y

 ;         (2) 

 

€ 

ug ≈ −
1
f0
∂Φ
∂y

; vg ≈
1
f0
∂Φ
∂x

 .        (3) 

 
With knowledge of the three-dimensional distribution of the geopotential at a specified time, 
we can compute the three-dimensional distribution of q using eq. 1. We then proceed to 
integrate eq. 2 forward in time. At each time step we determine the geostrophic winds by 
first “inverting” eq. 1 to find Φ from q and then using eq. 3 to determine the velocities. 
Solving eq. 1 to find Φ from q is referred to as “quasi-geostrophic potential vorticity-
inversion”.  
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11.3 Vertical propagation of Rossby waves 
 
We assume the presence of a constant time-independent zonal flow, U, which is perturbed 
slightly. We first introduce a streamfunction, defined as 
 

€ 

ug ≡ −
∂ψ
∂y

; vg ≡
∂ψ
∂x  ,  

 
so that ψ=Φ/f0. This is consistent with the quasi-geostrophic wind equations (9.16). The 
streamfunction associated with the perturbed zonal flow can be expressed as 
 

€ 

ψ = −Uy +ψ ' .           (11.9) 
 
Here ψ’ represents the perturbation to the zonal mean time-independent state. The quasi-
geostrophic potential vorticity equation, linearised around the time-independent state is 
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dgq
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≅
∂

∂t
+U ∂

∂x
⎛ 
⎝ 

⎞ 
⎠ 
q'+β ∂ψ '

∂x
= 0.        (11.10) 

 
Here q=Q+q’, with Q=f=f0+βy and  
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q'≡ ∇2ψ '+ ∂

∂p
f02

σ
∂ψ '
∂p
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⎠ 
⎟ .         (11.11) 

 
If we substitute a solution of the form 
 

€ 

ψ '=Ψ (p)exp i(kx + ly −ωt)[ ]         (11.12) 
 
into (11.10), we obtain 
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σ
∂Ψ
∂p

⎛ 

⎝ 
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⎞ 

⎠ 
⎟ ⎟ − (k

2 + l2)Ψ+
βk

kU −ω( )
Ψ = 0 .      (11.13) 

 
If we can, for simplicity, regard the factor f0

2/σ as a constant, then eq. 11.13 has the same 
structure as e.g. eq. 3.23: 
 

€ 

f0
2

σ
∂2Ψ

∂p2
+m2Ψ = 0 ,         (11.14) 

 
with the index of refraction or wave transmission coefficient, m, defined by 
 

€ 

m2 ≡ βk
kU −ω( )

− (k2 + l2) ,        (11.15) 

 
Vertically propagating waves with vertical wave number m exist if m2>0. On the other hand, 
if m2<0, the wave-amplitude decays with increasing height (see the reasoning below eq. 
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3.26). The parameter m2 determines the transmission of waves in the vertical direction.  
 The value of the index of refraction, m2, is determined by only two parameters that have 
nothing to do with the properties of the wave itself. These are β and U. Since the first 
parameter depends only on y, vertical variations of the index of refraction are determined by 
vertical variations of the zonal mean zonal wind velocity, U. For instance, if the index of 
refraction goes from positive to negative at some altitude, a wave will be attenuated if it 
propagates from the region with postive m2 to the region with negative m2. The wave may 
also be reflected or absorbed. Absorption occurs if m2 goes to infinity. This is the case if the 
denominator of the first term on the r.h.s. of (11.15) approaches zero, i.e. if 
 

€ 

U − cx = 0 ,          (11.16) 
 
Here, cx=ω/k is the x-component of the phase speed. The level where (11.16) is satisfied is 
called the critical level. 
 If we restrict our attention to stationary waves, we may put cx=0 (or ω=0). The 
implication of (11.15) is that stationary Rossby waves penetrate into upper atmosphere if the 
total horizontal wave number is smaller than 

€ 

β /U . Therefore, only relatively long 
stationary Rossby waves will be observed in the stratosphere (figure 11.1). The 
consequence of this is also that the mean zonal wind should be eastward for vertical 
penetration. Therefore, because in the summer hemisphere the polar stratosphere is 
dominated by easterlies, i.e there is an anticyclone over the pole, stationary Rossby waves 
are observed in the stratosphere only in the winter hemisphere. 
 The criterion for vertical propagation of stationary waves, m2>0, can be written as 
 

€ 

0 <U <
β

k2 + l2
≡Uc  ,         (11.17) 

 
where Uc is called the Rossby critical velocity. 
 For non-stationary waves the criterion for vertical propagation without loss of energy 
(11.15) can be expressed as  
 

€ 

0 <U − cx <Uc  .          (11.18) 
 
This again underlines the fact that the vertical transmissivity of the atmosphere to planetary 
waves is very sensitive to the zonal velocity.  
 Vertical propagation of waves can only occur if the winds are eastward and weaker 
than a critical strength. The very strong stratospheric winter polar vortex of the southern 
hemisphere (lower panel of figure 7.1) will more likely block and reflect wave activity than 
the weaker stratospheric winter polar vortex of the northern hemisphere (upper panel of 
figure 7.1). This idea is supported by figure 11.2, which shows the climate, for the years 
1989 to 2008, of the zonal mean eddy heat flux, [v*T*]  (defined in section 1.39) at 100 hPa, 
area averaged between 40°lat and 80°lat, for the northern hemisphere and for the southern 
hemisphere. The eddy heat flux is frequently used as a measure of the wave forcing from the 
troposphere to the stratosphere (this will be explained in section 11.7). In figure 11.2 we 
observe that this wave forcing undergoes different seasonal cycles in both hemispheres, with 
a maximum in mid-winter in the northern hemisphere and a maximum in spring in the 
southern hemisphere. In view of the theoretical ideas, presented above, the relatively weak 
wave forcing in the southern hemisphere winter would seem to relate to the very intense 
polar vortex. 
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FIGURE 11.2. Daily climate of the poleward eddy heat flux, [v*T*], at 100 hPa (area weighted averaged 
between 40°lat and 80°lat) for the northern hemisphere (black) and for the southern hemisphere, derived from 
20 years (1989-2008) of 6-hourly instantaneous values of [v*T*], using ERA-Interim reanalysis data. Months 
indicated along the x-axis are for the northern hemisphere. The corresponding months in the southern are 
shifted by 6 months, i.e. December and March correspond, respectively, to June and September in the southern 
hemisphere. The sudden increase of the eddy heat flux and associated wave activity in the southern hemisphere 
in September is hypothesized to be due to the reduction of the average westerly wind velocity in the mid-
latitudes in the lower stratosphere after approximately beginning of September (figure 7.2). Figure due to 
Yvonne Hinssen. 
 

 
FIGURE 11.3. Probability distributions for the 40-day averaged heat flux anomaly at 100 hPa, between 45°N 
and 75°N, for all winter days (black curve), and the 18 weak vortex (red) and 30 strong vortex (blue) events, as 
defined in Baldwin and Dunkerton (2001)2. Figure from Polvani, L. M., D. W. Waugh, 2004: Upward Wave 
Activity Flux as a Precursor to Extreme Stratospheric Events and Subsequent Anomalous Surface Weather 
Regimes. J. Climate, 17, 3548–3554. 

                                                
2 Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 
294, 581–584 
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 The relation between the strength of the vortex and wave forcing at 100 hPa is supported 
by figure 11.3, which shows probability distributions for the 40-day averaged eddy heat flux 
anomaly at 100 hPa between 45°N and 75°N for all winter days from 1958 to 2001 (black 
curve), for 18 weak vortex events (red) and for 30 strong vortex events (blue). Strong vortex 
events are clearly associated with lower than normal wave activity in the lower stratosphere, 
while weak vortex events are associated with stronger than average wave activity in the 
lower stratosphere. Of course, this does not necessarily indicate that vertical propagation is 
hindered when the vortex is strong. The direction of the causal link could very plausibly be 
the other way around, which would imply that the polar vortex is weak (strong) due to 
enhanced (reduced) mixing of potential vorticity associated with enhanced (reduced) 
planetary wave activity.  
 
 
11.4 Zonal average flux equation 
 
Here we derive an equation for zonally averaged meridional flux of momentum and heat, 
which discriminates between the effect of eddies and the effect of the mean meridional 
circulation. We start with the following equation for the material time rate of a quantity Q, 
where S is a source or sink of Q: 
 

€ 

dQ
dt

= S .           (11.19) 

 
In pressure coordinates this equation is, 
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where 
 

€ 

ω ≡
dp
dt

.           (11.21) 

 
The quantity Q may represent the potential temperature, in which case S represents diabatic 
heating or cooling. 
 The mass conservation equation in pressure coordinates is, neglecting earth’s 
curvature (section 1.24), 
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p
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∂v
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+
∂ω
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= 0 .        (11.22) 

 
Multiplying this equation by Q and combining the result with eq. 11.20, yields the flux-
form of equation (11.20), also called the continuity equation of Q: 
 

€ 

∂Q
∂t
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We now take the zonal average of this equation. Let us use the notation of section 1.39, 
where square brackets are introduced to indicate a zonal average, while a star is introduced 
to indicate a deviation from the zonal average. The zonal average of eq. 11.23 is 
 

€ 

∂ Q[ ]
∂t

+
∂ vQ[ ]
∂y

+
∂ ωQ[ ]
∂p

= S[ ] .        (11.24) 

 
The zonal average of the meridional flux of a quantity Q is 
 

€ 

vQ[ ] = v[ ] + v *( ) Q[ ] +Q*( )[ ] = v[ ] Q[ ] + v *Q*[ ] .     (11.25) 
 
Therefore, the zonal average flux divergence equation becomes 
 

€ 

∂ Q[ ]
∂t

+
∂ v[ ] Q[ ]
∂y

+
∂ v *Q*[ ]

∂y
+
∂ ω[ ] Q[ ]
∂p

+
∂ ω *Q*[ ]

∂p
= S[ ] .    (11.26)  

 
The zonally averaged continuity equation is: 
 

€ 

∂ v[ ]
∂y

+
∂ ω[ ]
∂p

= 0 .          (11.27) 

 
Using this, we can write the flux equation as 
 

€ 

∂ Q[ ]
∂t

+ v[ ] ∂ Q[ ]
∂y

+ ω[ ] ∂ Q[ ]
∂p

+
∂ v *Q*[ ]

∂y
+
∂ ω *Q*[ ]

∂p
= S[ ] .    (11.28) 

 
In the following section we’ll use this equation as a basis for the derivation of an equation 
describing the zonal mean meridional circulation (figure 10.20). The quantity [v*Q*] 
represents the zonal mean meridional eddy flux of Q. 
 
 
11.5 Zonal mean meridional circulation in midlatitudes (the Ferrel cell) 
 
Let us “apply” eq. 11.28 to the following two equations (see eqs. 12a and 8 of Box 9.1). 
 

€ 

du
dt

= −
∂Φ
∂x

+ fv + Fx ;         (11.29) 

 

€ 

dT
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=
RT
cpp

ω +
J
c p

 .         (11.30) 

 
The term, Fx, represents a frictional force per unit mass. This gives 
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+
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We now make the following approximation: 
 

€ 

∂ ω * u*[ ]
∂p

<<
∂ v * u*[ ]

∂y
 and ∂ ω *T *[ ]

∂p
<<

∂ v *T *[ ]
∂y

;     (11.33) 

 
This must be supported by evidence from observations, reanalysis data or numerical 
simulations. An inspection of the magnitude of the four different terms in (11.33) during the 
evolution of the simulated life cycle of an unstable baroclinic wave, which is described in 
section 10.7, reveals the general validity of the inequalities in (11.33).  Furthermore: 
 

€ 

v[ ] = vg[ ] + va[ ] =
1
f
∂Φ
∂x

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + va[ ] = va[ ];      (11.34) 

 
With (11.33) and (11.34) the zonal mean x-momentum equation, (11.31), becomes 
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∂ u[ ]
∂t

= − va[ ] ∂ u[ ]
∂y

− ω[ ] ∂ u[ ]
∂p
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∂y
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while the temperature equation (11.32) becomes 
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c p
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For mathematical simplicity, we further simplify eqs. 11.35 and 11.36 by assuming that 
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∂p
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∂y

 ;         (11.37a) 

€ 

∂ u[ ]
∂y

<< f ≈ f0 ;          (11.37b) 

 

€ 

va[ ] ∂ T[ ]
∂y

<<
κ T[ ]
p

−
∂ T[ ]
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ω[ ] ≡ Sp ω[ ]  ,      (11.37c) 

 
and 
 

€ 

− ω[ ] ∂ T[ ]
∂p

+
κ T[ ]
p

ω[ ] +
κ
p
ω *T *[ ] ≡ Sp ω[ ] +

κ
p
ω *T *[ ] ≈ Sp ω[ ]  ;    

 
in which we thus require that 
 

€ 

κ
p
ω *T *[ ] << Sp ω[ ] ,         (11.37d) 
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The static stability is defined as 
 

€ 

Sp ≡
κ T[ ]
p

−
∂ T[ ]
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

T[ ]
θ[ ]

∂ θ[ ]
∂p

> 0 ,       (11.38) 

 
In the troposphere, the zonal mean static stability, Sp≈ 5×10-4 K Pa-1.   
 Assumption (11.37a) is definitively not valid in general. Furthermore, assumption 
(11.37b) is in fact equivalent to stating that the Rossby number (section 1.23) is much 
smaller than 1, which is not a very robust assumption either. Nevertheless, it is thought that 
the physical content of the equations is not seriously affected by the application of these 
assumptions. Assumptions (11.37c) and (11.37d), on the other hand, are quite robust, at least 
in the quite realistic baroclinic life-cycle simulation, which is described in section 10.7.  
 By applying (11.37a,b,c,d), eqs. 11.35 and 11.36 simplify to 
 

€ 

∂ u[ ]
∂t

= f0 va[ ] − ∂ v * u*[ ]
∂y

+ Fx[ ]  ;       (11.39a) 

 

€ 

∂ T[ ]
∂t

= Sp ω[ ] − ∂ v *T *[ ]
∂y

+
J[ ]
c p

 .        (11.39b) 

 
We assume that the zonal mean state conforms to hydrostatic balance and gesotrophic 
balance as follows (Box 9.1): 
 

€ 

∂ Φ[ ]
∂p

= −
R T[ ]
p

;          (11.40a)

        

€ 

f0 u[ ] = −
∂ Φ[ ]
∂y

.          (11.40b) 

 
From these two equations we derive an equation for thermal wind balance of the zonal mean 
state: 
 

€ 

f0
∂ u[ ]
∂p

=
R
p
∂ T[ ]
∂y

.          (11.41) 

 
Consistent with the continuity equation (11.27) we may introduce a streamfunction, ψ, with 
units [Pa m s-1] as follows.  
 

€ 

va[ ] ≡ ∂ψ
∂p

; ω[ ] ≡ − ∂ψ
∂y

.         (11.42) 

 
Taking the time derivative of the equation for zonal mean thermal wind balance (11.41) we 
may write, 
 

€ 

f0
∂
∂p

∂ u[ ]
∂t

=
R
p
∂
∂y

∂ T[ ]
∂t

,         (11.43) 
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FIGURE 11.4. Meridional cross-section showing the zonal average meridional eddy temperature flux, 
[v*T*] (solid black contours, labeled in units of K m s-1], and zonal average potential temperature 
(cyan, labeled in units of K) at t=4 days in the simulation of an unstable baroclinic wave, described 
in chapter 10. The initial state is shown in figure 10.6.  
 
Which, upon substitution of (11.39a,b), yields 
 

€ 

∂2ψ

∂y2
+
f0
2p

SpR
∂2ψ

∂p2
=
f0p
SpR

∂2 v * u*[ ]
∂p∂y

−
1
Sp

∂2 v *T *[ ]
∂y2

−
f0p
SpR

∂ Fx[ ]
∂p

+
1

c pSp
∂ J[ ]
∂y

 , (11.44) 

 
Eq. 11.44, which is referred to as the “Kuo-Eliassen equation”3, describes the zonal mean 
meridional circulation in mid-latitudes that is required to maintain thermal wind balance in 
the presence of processes that disturb this state of balance. We shall refer to this meridional 
circulation as the “zonal mean ageostrophic response”, which is a short way of saying that 
it represents the response required to maintain zonal mean thermal wind balance. The 
processes that disturb zonal mean thermal wind balance are eddy fluxes of momentum (first 
term on the r.h.s. of eq. 11.26), eddy fluxes of sensible heat (second term on the r.h.s. of eq. 
11.26), the zonal average zonal frictional force (third term on the r.h.s. of eq. 11.26) and 
diabatic heating or cooling (fourth term on the r.h.s. of eq. 11.26). The Kuo-Eliassen 
equation is an elliptic partial differential equation (Box 7.1), similar to the potential vorticity 
inversion (7.12) (see also eq. 1 of Box 11.1), the Sawyer-Eliassen equation (8.32) and the 

                                                
3 Kuo, H-L., 1956: Forced and free meridional circulations in the atmosphere. J.Atmos.Sci., 13, 561-568. 
Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulations in a circular vortex. 
Astrophys.Norv., 5, 19-60. 
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omega equation (9.31). If the streamfunction is specified at the boundaries of the domain of 
solution, the Kuo-Eliassen equation can be solved by the techniques that have been 
described in chapters 7 and/or 9. 
 Retaining only the forcing due to the eddy flux of heat in the forcing term on the r.h.s. of 
(11.44), the Kuo-Eliassen equation reduces to 
   

€ 

∂2ψ

∂y2
+
f0
2p

SpR
∂2ψ

∂p2
= −

1
Sp

∂2 v *T *[ ]
∂y2

≡ F  .      (11.45) 

  
 The arguments below (9.31) can be applied also here. Therefore, 
 

€ 

∂2ψ

∂y2
+
f0
2p

SpR
∂2ψ

∂p2
∝ −ψ  ,         (11.46) 

 
so that eq. 11.45 becomes (approximately) 
 

€ 

−ψ ∝ F  .           (11.47) 
 
 There is one dominant maximum in the eddy heat flux, shown in figure 11.4. Roughly 
speaking, this means that the associated forcing term, F, on the r.h.s. of eq. 11.45 is positive 
everywhere in this domain, which implies that ψ<0 everywhere. Assuming zero zonal mean 
mass-flow perpendicular to the boundaries, we may set 
 

€ 

ψ = 0            (11.48) 
 
at all boundaries. At the side boundary this is not a realistic condition (figure 10.20). A 
solution to this problem is to position the side boundary of the domain of solution of eq. 
11.45 relatively far away from the region of non-zero forcing, i.e. the region with a non-zero 
eddy heat flux, and still impose the boundary condition (11.48). With the definition of [ω] in 
terms of the streamfunction (11.42), we conclude that there must be zonal mean ascent north 
of the central latitude, y=y0, and zonal mean descent south of the central latitude, which 
agrees with the direction of the meridional circulation shown in figure 10.20. This 
circulation is illustrated schematically in figure 11.5. Positive eddy heat fluxes in middle 
latitudes are therefore responsible for forcing of an indirect meridional circulation 
(descending warm air and rising cold air), called the “Ferrel circulation” (figures 10.21 
and 10.22). 
 Let us solve the Kuo-Eliassen equation with only forcing due to meridional eddy heat 
flux included, i.e. eq. 11.45, for an idealized situation that approximately resembles the 
situation in the simulation of the life cycle of a baroclinic wave on the f-plane (section 10.7) 
at t=96 hrs (figure 11.4). The eddy heat flux is poleward nearly everywhere. The maximum 
eddy heat flux is [v*T*]=120 K m-1 and near the Earth’s surface at the latitude y=y0 (figure 
11.4). This can be approximated mathematically as 
 

€ 

v *T *[ ] =120cos
π y − y0( )
2yscale

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ cos

π ps − p( )
2pscale

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  if |y-y0|≤yscale and py0 ≤p≤ps; (11.49a) 

€ 

v *T *[ ] = 0  otherwise.         (11.49b) 
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FIGURE 11.5. The meridional circulation induced by positive (poleward) eddy temperature fluxes 
within the semi-circle. The North Pole is on the left hand side of the figure. The area of positive 
meridional eddy heat flux is symmetrical about the latitude, y=y0. Adapted from James (1994) (see 
list of books at the end of this chapter). 
 
Here, yscale=1500 km and pscale=500 hPa represent, respectively, the meridional scale and the 
vertical scale of the area of zonal mean positive (poleward) heat flux. The forcing term on 
the r.h.s. of 11.45 is 
 

€ 

F = −
120
Sp

π2

4 yscale( )2
cos

π y − y0( )
2yscale

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ cos

π ps − p( )
2pscale

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  if |y-y0|≤yscale and py0 ≤p≤ps;     (11.50a) 

 

€ 

F = 0  otherwise.               (11.50b) 
 
 Eq. 11.45 is solved by the numerical relaxation method that is described in section 9.9 
(see also Box 7.2).  The two-dimensional domain of solution is divided into equal grid-cells 
with dimensions Δy and Δp. A grid point is identified by its index (j, k), where j represents 
the index in the positive y-direction and k represents the index in the positive p-direction. 
The discrete form of eq. 11.45 is 
 

€ 

1
Δy2

ψ j +1,k[ ] +ψ j −1,k[ ]( ) +
f0
2p j,k[ ]
SpRΔp

2 ψ j,k +1[ ] +ψ j,k −1[ ]( ) − 2 1
Δy2

+
f0
2p j,k[ ]
SpRΔp

2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ ψ j,k[ ] 

€ 

− F j,k[ ]  =0,          (11.51) 
 
where the “forcing” is given eq. 11.50a,b. As a boundary condition we simply set ψ=0 at all 
boundaries. As an initial guess of the solution we substitute ψ=0 into (11.51). The r.h.s. of 
eq. 11.51 will then almost certainly yield a non-zero residual. We then use this residual, 
RES, to obtain a better guess of the solution at the grid point (j,k), i.e. 
 

€ 

ψ j,k[ ]{ }new = ψ j,k[ ]{ }old +
2
Δy2

+
2 f0

2p[ j,k]
SpRΔp

2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

−1

RES ,    (11.52) 

 
in which case the new residual at grid point (j,k) is reduced to zero. However, the residuals 
at the neighbouring grid points are not yet reduced to zero. Nevertheless, if we repeat this 
procedure for each grid point in sequence, we will note that the residual at all grid points 
approaches zero asymptotically for sufficient repetitions of these steps. With an appropriate 
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a  

b  

c  
FIGURE 11.6: The solution eq. 11.45, for three values of Sp (f0=10-4 s-1), in terms of the vertical 
velocity (labeled in units of 0.1 hPa hr-1), with prescribed eddy heat flux (eq. 11.49), shown in black 
(label in units of K m s-1). Red (blue) corresponds to downward (upward) motion.  
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FIGURE 11.7: The horizontal domain average value of the static stability as a function of pressure at 
t=96 hrs in the run described in section 10.7. 
 
convergence criterium we can obtain an acceptable numerical solution of eq. 11.45. 
 The solution is shown in figure 11.6 for three cases. The domain of solution spans a 
latitudinal distance, which is twice as large, i.e. 72°. Only the central part of this domain is 
shown. The three cases differ only in the prescribed value of the static stability parameter, Sp 
(eq. 11.38). The values are Sp=10-5 K Pa-1 (upper panel), 10-4 K Pa-1 (middle panel) and 10-3 K 
Pa-1 (lower panel). In all cases f0=0.0001 s-1. The horizontal domain-averaged (below 400 
hPa) value of Sp in the simulation of section 10.7, corresponding to t=96 hours (figure 11.4), 
is 5×10-4 K Pa-1 (figure 11.7). Therefore, case (b) and case (c) are most comparable to the 
situation shown in figure 10.20. According to the solution of the quasi-geostrophic Kuo-
Eliassen equation (11.45), eddy heat fluxes force an indirect meridional circulation. The 
intensity of this circulation is weaker in figure 11.6 than it is in figure 10.20. Nevertheless, 
the Kuo-Eliassen provides a qualitatively consistent explanation for the existence of the 
indirect circulation..  
 Figure 11.6 demonstrates that lower static stability, not only leads to an intensification of 
the meridional circulation, but also leads to a reduction of the aspect ratio (the horizontal 
scale divided by the vertical scale) of the meridional circulation. When the atmosphere is 
very stable (large value of Sp) the meridional circulation is relatively “flat” and weak (lower 
panel of figure 11.6). By analogy of the Kuo-Eliassen equation (11.45) with the two-
dimensional omega equation (9.87) and based on the arguments leading form eq. 9.87 to 
9.98, we conclude that the aspect ratio of the Ferrel cell is governed by the following 
equation: 
 

€ 

Ly
Δp

=
2π
f0

SpR
p

=
2π
f0

σ  ,        (11.53) 

 
or, with σ=2×10-6 m2Pa-1s-1, 
 

€ 

Δp =
f0

2π σ
Ly ≈100Ly .         (11.54) 
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FIGURE 11.8. The annual average wind-vector near the surface of the Earth and the meridional 
circulations as correctly envisioned by William Ferrel in 1856. 
 
 
Ly is determined by the meridional width of the “cyclone track”, which is approximately 
equal to the meridional width of the region of positive eddy heat flux (i.e. approximately 
3000 km). We thus find that the “upward penetration” of the Ferrel circulation is about 300 
hPa, and that this must increase with decreasing static stability, as is indeed found from the 
solution of eq. 11.45 (figure 11.6). 
 The existence of an indirect meridional circulation implies that the average near surface 
winds in the northern hemisphere in mid-latitudes blow from the south-west (see figure 
11.8), while on average the winds veer with increasing height, consistent with warm air 
advection, i.e. with heat transport from the equator to the pole (section 1.35).  
 The sensible heat flux by eddies is directed down the gradient of the zonal average 
temperature, i.e. poleward. This has led many researchers to parametrise the heat flux by 
eddies in zonally symmetric models of the general circulation as 
 

€ 

v *T *[ ] = −Kh
∂ T[ ]
∂y

,         (11.55) 

 
where Kh is a positive eddy diffusion coefficient and the derivative with respect to y is 
performed at constant pressure. This parametrisation is directly related to Prandtl’s “mixing 
length” turbulence theory (section 1.8). Unfortunately, an analogous parametrisation does 
not hold for the eddy flux of eastward momentum (figure 11.9). The zonal mean linear 
momentum per unit mass on the f-plane is (eq. 1.120) 
 

€ 

M[ ] = u[ ] − f0y  .          (11.56) 
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FIGURE 11.9: Meridional cross-section showing the zonal average meridional flux of eastward 
momentum, [u*v*] (solid black contours, labeled in units of m2 s-2], and the zonal average potential 
temperature (cyan, labeled in units of K) and the zonal average linear momentum per unit mass, [M] 
(green, labeled in m s-1, assuming y0=0) at t=4 days in the primitive equation model simulation of an 
unstable baroclinic wave on an “f-plane” (constant Coriolis parameter, f0=10-4 s-1), which is described 
in section 10.7. The arrows indicate the direction of the eddy momentum flux. The double dashed 
arrow indicates the eddy-mixing zone. The corresponding eddy heat flux is shown in figure 11.4. 
The initial state is shown in figure 10.5. Note that eddy-momentum flux in this numerical simulation 
bears no relation to the gradient of zonal mean linear momentum, ∂[u]/∂y-f0≈ - f0 (see the text). It 
should also be noted that this instantaneous distribution of momentum flux by eddies is not 
representative for the whole simulated life-cycle. In other words, the pattern of eddy momentum flux 
is quite variable in time, in contrast to the pattern of eddy sensible heat flux. 
 
In view of (11.37b), the meridional gradient of [M] is approximately equal to -f0, which is 
negative on the northern hemisphere. From Prandtl’s theory we now expect a poleward flux 
of eastward momentum due to the action of eddies at all latitudes on the northern 
hemisphere. However, figure 11.9 reveals that this is not the case. Apparently, the eddy flux 
of eastward momentum in the numerical simulation may be directed up the gradient of 
average eastward momentum. The American meteorologist, Victor Starr, has associated this 
phenomenon with negative viscosity4. Note (figure 11.9) that the eddy momntum fluxes 
converge in the upper troposphere in the middle of the domain, which implies that eddies 
accelerate the zonal mean zonal flow. 
 The indirect Ferrel circulation tranports sensible heat equatorwards, opposite in direction 
to the eddy flux of sensible heat. But, the meridional heat flux by eddies is always larger 
than the meridional heat flux by the Ferrel cell, so that the net heat flux is poleward. In the 
zonal mean view of the evolution of an adiabatic atmosphere (as is the case in this 
simulation) this net poleward heat flux is manifested as a downward movement of the 
isentropes on the poleward cold side of the front and a simultaneous upward movement of 

                                                
4 V. P. Starr, 1968: Physics of Negative Viscosity Phenomena. MacGraw-Hill, 256 pp. 
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the isentropes on the equatorward warm side of the front (figure 11.10). In an adiabatic 
atmosphere isentropes are material surfaces. Therefore, figure 11.10 suggests that air 
parcels are moving upward on the equatorward side of the front and downward on the 
poleward side of the front. In other words, the zonal mean “Lagrangian” meridional 
circulation is direct, whereas the Ferrel circulation (figure 10.20), which is the result of a 
“Eulerian” average of the meridional and vertical velocity, is indirect. The Lagrangian 
meridional circulation is of physical interest because this circulation reveals the actual 
direction of the zonal mean meridional mass flux, which is usually dominated by the 
poleward eddy mass flux. Indeed, in figure 11.10 we observe an increase of mass between 
θ=290 K and θ=305 K for y>y0, and a decrease of the mass between θ=290 K and θ=305 K 
for y<y0. The layer between θ=290 K and θ=305 K belongs to the Middleworld. The 
opposite is the case in the Underworld, i.e. between the earth’s surface and θ=290 K. We 
may conclude that in an adiabatic unstable baroclinic wave mass flows poleward in the 
Middleworld and equatorward in the Underworld, as is illustrated in figure 10.22. The 
following section derives a set of approximate equations, which provides insight into the 
driving mechanism of the zonal mean poleward mass flux in and above the Middleworld. 
 

 
 
FIGURE 11.10: The zonal mean position of selected isentropes at t=2 days (thin contours), at t=3 
days (thicker contours) and at t=4 days (thick contours) during the simulation of the adiabatic life 
cycle of an unstable baroclinic wave. The initial state is shown in figure 10.6. Each arrow indicates 
the change in vertical position of the 290 K isentrope during 1 day.  
 
PROBLEM 11.1. Meridional circulation forced by the eddy flux of easward 
momentum  
(a) Devise an analytical expression, similar to eq. 11.49, that best approximates the 
distribution of the eddy flux of eastward momentum in figure 11.9 and solve the Kuo-
Eliassen equation with only this forcing effect included: i.e.  
 

€ 

∂2ψ

∂y2
+
f0
2p

SpR
∂2ψ

∂p2
=
f0p
SpR

∂2 v * u*[ ]
∂p∂y

 .       (11.57) 
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Will the eddy flux of eastward momentum also force an indirect meridional circulation and 
thus reenforce the indirect circulation that is forced by the eddy heat flux?  
(b) Can you add the individual solutions of eqs. 11.45 and 11.57 in order to obtain solution 
of the full equation:  
 

€ 

∂2ψ

∂y2
+
f0
2p

SpR
∂2ψ

∂p2
=
f0p
SpR

∂2 v * u*[ ]
∂p∂y

−
1
Sp

∂2 v *T *[ ]
∂y2

 ?     (11.58) 

 
PROBLEM 11.2. Sensitivity of the Ferrel cell to variations in static stability and 
Coriolis parameter  
(a) What value of the Coriolis parameter, f0, will yield a solution of the Kuo-Eliassen 
equation 11.45 which is identical to that shown in the middle panel of figure 11.6 if Sp=10-6 

K Pa-1?  
(b) Check whether the aspect ratios of the circulations, shown in figure 11.6, are 
approximately in accord with the eq. 11.54. 
 
PROBLEM 11.3. Applicability of eddy diffusion theory  
Based on figures 10.6 and 11.4, discuss the applicability of the theory of eddy diffusivity 
(Prandtl’s mixing length theory5) to the eddy flux of sensible heat in a two-dimensional 
(zonal mean) model of the general circulation. 
 
 
11.6 Transformed Eulerian Mean (TEM) and Eliassen-Palm flux  
 
This section discusses an analytical model of the interaction of eddies with the zonal mean 
state of the atmosphere, which interprets the influence of eddies as a drag force on the zonal 
mean zonal flow and, furthermore, provides insight into the interaction between adiabatic 
processes and diabatic processes.   
 We begin with the “Eulerian mean” quasigeostrophic equations, governing the zonal 
mean zonal wind and zonal mean temperature are (see eqs. 11.39a, 11.39b): 
 

€ 

∂ u[ ]
∂t

= f0 va[ ] − ∂ v * u*[ ]
∂y

+ Fx[ ].        (11.59) 

 
and 
 

€ 

∂ T[ ]
∂t

= Sp ω[ ] − ∂ v *T *[ ]
∂y

+
J[ ]
c p

.        (11.60) 

 
Let us introduce the following “residual velocities”: 
 

€ 

ω[ ]r ≡ ω[ ] − ∂
∂y

v *T *[ ]
Sp

         (11.61) 

                                                
5 http://en.wikipedia.org/wiki/Mixing_length_model 
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and 
 

€ 

va[ ]r ≡ va[ ] +
∂
∂p

v *T *[ ]
Sp

 .        (11.62) 

 
The residual velocities, [va]r and [ω]r, can be interpreted as “physically consistent” velocity 
components, because they satisfy the following “continuity equation”, which is analogous to 
the “real” continuity equation (11.22): 
 

€ 

∂ va[ ]r
∂y

+
∂ ω[ ]r
∂p

= 0  .         (11.63) 

 
The residual velocities represent the “transformed Eulerian zonal mean velocity 
components” of the zonal mean “residual flow”. A difficult aspect of this “residual flow” is 
that it does not satisfy the “usual” boundary conditions at the Earth’s surface. For example, 
in the idealized situation of figure 11.6, where [ω]=0 at the Earth’s surface, the residual 
flow should be downward at the Earth’s surface (i.e. [ω]r>0) poleward of the region of 
maximum eddy heat flux and upward at the Earth’s surface (i.e. [ω]r<0) equatorward of the 
region of maximum eddy heat flux. In view of these pecularities, the theory to be described 
in the following is usually not applied only to the  “Underworld” (figure 1.48). The lower 
boundary of the Middleworld is usually taken to be the 300 K or 310 K isentrope. The lower 
boundary of the Overworld is usually taken to be the 370 K or 380 K isentrope.  
 Substituting (11.61) and (11.62) into (11.59) and (11.60) yields the following 
transformed Eulerian mean (TEM) equations, which govern the time rate of change of the 
zonal mean zonal wind and zonal mean temperature: 
 

€ 

∂ u[ ]
∂t

= f0 va[ ]r −
∂ u*v *[ ]

∂y
− f0

∂
∂p

v *T *[ ]
Sp

+ Fx[ ]      (11.64) 

 
and  
 

€ 

∂ T[ ]
∂t

= Sp ω[ ]r +
J[ ]
c p

 .         (11.65) 

 
The effects of eddies are manifested in only one of the two equations, i.e. in eq. 11.64. The 
temperature equation (11.65) is remarkably simple. Averaged over sufficiently long time 
this equation reveals that adiabatic heating (first term on the r.h.s. of eq. 11.65) is balanced 
by diabatic heating (second term on the r.h.s. of eq. 11.65), or cross-isentropic flow. Note 
that such a stationary state will not occur in the numerical simulation of the adiabatic life 
cycle of an unstable baroclinic wave, which is described at length in section 10.7.  
 Eq. 11.64 can be written in short as (assuming, for simplicity, that Fx=0) 
 

  

€ 

∂ u[ ]
∂t

= f0 va[ ]r +
! 
∇ ⋅
! 
F ,         (11.66) 

 
where 
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€ 

! 
∇ ≡ 0, ∂

∂y
, ∂
∂p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,          (11.67) 

 
and where 
 

  

€ 

! 
F ≡ − u*v *[ ],− f0

Sp
v *T *[ ]

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ .        (11.68) 

 
is called the “Eliassen-Palm (EP) flux vector” 6. It is easily concluded from eq. 11.66 that 
the zonal mean zonal flow is accelerated in regions where the EP-flux vector diverges 
and decelerated in regions where the EP- flux vector converges. The EP-flux vector is a 
crucial quantity in understanding the effect of eddies and waves on the zonal average state of 
the atmosphere. In the “TEM-view” of the general circulation the eddies act to transfer 
momentum between regions of “eddy- or wave-generation” and regions of “eddy- or wave-
dissipation”. In the following few sections we will further elaborate upon the implications of 
this simple7 and attractive view of eddy-zonal mean flow interaction, which became  popular 
very quickly after its first publication at the end of the 1970’s.  
 
 
11.7 Stationary diabatic- or the wave drive circulation 
 
The TEM-thermodynamic equation (11.65) states that, in a stationary state, the adiabatic 
temperature tendency, due to the vertical component of the residual mean flow, is in balance 
with the diabatic temperature tendency, due to heating or cooling by e.g. radiation, i.e. 
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In other words, under stationary conditions, or averaging over long periods of time (longer 
than the time scale of the life-cycle of a baroclinic wave), the vertical component of the 
residual flow can be identified with the cross-isentropic flow, dθ/dt (section 7.3), i.e. the 
vertical velocity in the isentropic coordinate system. This is why the residual circulation is 
frequently referred to as the “diabatic circulation”, but some prefer to call it the “wave-
driven circulation”8. 
 Figure 11.11 shows the zonal mean, monthly mean “diabatic residual vertical motion” 
in March and June up to θ=500 K (about 50 hPa), according to the ERA40-reanalysis for the 
period 1979 to 2002. Upwelling is observed in the tropics, approximately between 30°S and 
30°N, and downwelling elsewhere, even in the summer hemisphere! This pattern of diabatic 
heating or cross-isentropic flow, which is not expected on the grounds of only radiation 
theory (see e.g. figure 2.24 and section 12.3), is a direct consequence of eddy heat and 
momentum transport. This can easily be distilled from eq. 11.66, which contains the full 
effect of eddies on the zonal mean state of the atmosphere.  

                                                
6 Eliassen, A. and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, , 
no.3, p1-23. 
7 Somewhat over-simplified, as is indicated in box 12.1. 
8 Shepherd, T.G, 2002: Issues in stratosphere-troposphere coupling. J.Meteorol.Soc.Japan, 80, 769-792. 
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FIGURE 11.11. Zonal mean monthly mean isobars (dashed black lines, labelled in units of hPa) and 
monthly mean tendency of the potential temperature (cross-isentropic flow) (labelled in units of K 
day-1; contour interval is 0.5 K day-1) as a function of latitude and potential temperature for March 
(upper panel) and for June (lower panel) according to the ERA-40 reanalysis. The thick black line 
indicates the zonal mean, monthly mean position of the Earth’ surface. The average is for the period 
1979-2002. Contours are not drawn if pressure is greater than 750 hPa. Data provided by Paul 
Berrisford and Yvonne Hinssen. 
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FIGURE 11.12. Instantaneous Eliassen-Palm flux vector and its divergence at t=4 days in the 
primitive equation model simulation of a growing baroclinic wave on an f-plane, which is discussed 
in detail in section 10.7. The horizontal component of the EP-flux vector is magnified 12 times 
compared to the vertical component. The contours of EP-flux divergence are labeled in units of 10-2 
m s-2.  
 
 The notion that divergence or convergence of zonal momentum due to the eddy 
meridional momentum flux should reduce or enhance the zonal velocity is intuitively 
logical. This effect of eddies (and waves) is referred to as “eddy-stress” or “wave-drag” in 
sections 1.8 and 3.5. Here we see that the meridional heat flux, due to the action of planetary 
waves and eddies, has an identical effect on the zonal flow. We shall see in chapter 12 that it 
is difficult to exagerate the crucial effect of “planetary wave-drag”, in regions of EP-flux 
vector convergence, on the zonal mean state of the upper troposphere and stratosphere.  
 Equally important for understanding the atmospheric general circulation is the fact that 
the zonal mean zonal flow is accelerated in regions of EP-flux vector divergence. This effect 
explains the existence of the mid-latitude surface westerlies (figure 10.19). It also 
explains the existence of so-called eddy-driven jets, which arrise in the upper troposphere 
due to eddy mixing of potential vorticity, which weakens the meridional gradient of 
potential vorticity in the mixing zone and at the same time enhances this gradient at the 
northern and southern edges of this mixing zone (chapter 7). Qualitatively in accord with 
the solution of the PV-inversion equation, eddy-driven jets are observed at the edges of the 
mixing zone.  
 Figure 11.12 shows the instantaneous EP-flux vectors and their divergence at t=4 days in 
the baroclinic life cycle simulation, which is presented in section 10.7 (figures 11.4 and 
11.8). The EP-flux vector is upward nearly everywhere, which is always the case if the wave 
transports heat poleward. In the upper half of the region of strongest baroclinic wave growth 
the EP-flux vector divergence is in general negative. In a stationary state this would lead to 
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€ 

va[ ]r = −
1
f0

! 
∇ ⋅
! 
F > 0  ,         (11.70) 

 
This implies a poleward residual flow in mid-latitudes. Due to continuity (eq. 11.63) and the 
asymmetric upper and lower boundary conditions on this residual flow (see section 11.8), 
the residual flow is upward on the tropical side and downward on the poleward side of the 
baroclinic wave. This effect of planetary wave drag in the stratosphere on the zonal mean 
state of the troposphere is referred to as “Downward Control” 9. In the tropics air is drawn 
upwards from the troposphere through the tropical tropopause into the stratosphere. The 
term “extra-tropical pump” is used to describe the effect of wave-drag in mid-latitudes on 
the upwelling in the tropics. This forced tropical upwelling is thought to be the cause of the 
very low temperatures that are observed in the upper tropical troposphere (figure 1.2). The 
very cold layer of air, coinciding with the tropical tropopause, is referred to as a “cold trap” 
because air passing through this layer is “freeze-dried”. If true, this would explain the very 
low relative humidity of the lower stratosphere.  
 The time-average effect of unstable baroclinic waves on the zonal mean state of the 
atmosphere (the general circulation) can, thus, be associated with a drag force on the zonal 
mean zonal flow in the upper troposphere and lower stratosphere, which is equivalent, on 
average, to a deceleration in the order of 10-4 m s-2 (about 10 m s-1 day-1)10. In mid-latitudes 
this is comparable in magnitude to the acceleration due to a Coriolis force, which is exerted 
on an air parcel that is travelling with a velocity of 1 m s-1, i.e. implying that [va]r≈1 m s-1. 
Since zonal velocities in stratosphere are usually much larger, the drag force usually does 
not strongly disturb the state of geostrophic balance or thermal wind balance. Nevertheless, 
if this wave drag is sustained for long periods of time (months to years), it does lead to a 
systematic drift of air (in particular of ozone) from the tropics towards the poles. In the 
following section we evaluate this drift from the solution of an alternative form of the Kuo-
Eliassen equation. 
 
 
11.8 Residual mean meridional circulation  
 
As explained in section 11.7, planetary wave drag, in particular in the mid-latitude upper 
troposphere and stratosphere, leads to a poleward drift of air and, due to continuity, 
downwelling over the poles and upwelling in the tropics. This meridional flow is referred to 
as the Brewer-Dobson “circulation”. The term “circulation” is placed in between inverted 
commas because we have thus far exclusively used this term to indicate the poleward drift of 
air in the upper troposphere and stratosphere. It is not clear whether the equatorward return 
flow occurs in the lower troposphere or in the upper stratosphere or mesosphere, although 
there are strong indications that the return occurs in the Underworld (figures 10.22 and 
11.10). 
 Based on eq. 11.63 we may introduce a residual streamfunction, χ, so that 
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va[ ]r ≡
∂χ
∂p

; ω[ ]r ≡ −
∂χ
∂y

 .        (11.71) 

                                                
9  Haynes, P.H. et al., 1991: On the “Downward Control” of extratropical diabatic circulations by eddy-
induced mean zonal forces.J.Atmos.Sci., 48, 651-678. 
10 Instantaneous deceleration can be much larger, such as at day 4 of the simulated baroclinic life cycle of 
section 10.7 
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FIGURE 11.13. Continued on next page. For caption see next page. 
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FIGURE 11.13. EP-flux vectors (black arrows), EP-flux divergence (thin solid blue (negative) and 
red (positive) contours) and residual circulation streamfunction, χ, (thick solid red contours) at three 
instances in time (after 2 days, after 3 days and after 4 days of simulation) during the baroclinic life-
cycle simulation on an f-plane, described in section 10.7. The horizontal component of the EP-flux 
vector is magnified 12 times compared to the vertical component. The contours of EP-flux 
divergence are labeled in units of 10-2 m s-2. The contours of χ are labeled in units of 106 m2 s-1. The 
residual circulation seems to cross the Earth’s surface. If this flow is downward, this may be 
interpreted as a manifestation of an increase in pressure at the earth’s surface. 
 
 
Assuming thermal wind balance (eq. 11.43,), we can easily derive, from (11.65) and (11.66), 
the following equation for the residual mean meridional circulation: 
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This equation represents the transformed Eulerian mean Kuo-Eliassen equation. At the 
Earth’s surface [ω]≈0 so that  
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≈ −
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 ,        (11.73) 

 
which implies that at the Earth’s surface we should impose 
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FIGURE 11.14. Brewer’s (1949) original figure, illustrating what came to be known as the Brewer-
Dobson circulation. “A supply of dry air is maintained by a slow mean circulation from the 
equatorial tropopause”. The contours represent isotherms, labeled in units of K. The cold point 
tropopause corresponds to the equatorial region at about 17 km above the earth’s surface where the 
temperature dips below 200 K. 
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χ≈
v *T *[ ]
Sp

          (11.74) 

 
Let us assume that          
 

€ 

χ = 0            (11.75)
  
at the side- and top-boundaries of the domain of solution of eq. 11.72. Furthermore, in the 
simulation of chapter 10 we assume [J]=0, i.e. we have adiabatic conditions.  Note that 
vertical motion in adiabatic conditions implies vertical motion of isentropes. We proceed to 
solve eq. 11.72 for the distribution of the EP-flux divergence from the output of the model 
run of section 10.7. The results for day 2, 3 and 4 are shown figure 11.13. As expected, the 
residual mean circulation is direct, i.e. there is downwelling on the poleward cold side and 
upwelling on the equatorward warm side of the baroclinic wave. The residual flow is 
poleward at levels where the EP-flux converges. Therefore, in the two-dimensional (zonal 
mean) picture of the general circulation, the effect of zonal asymmetries (waves and eddies) 
appears as a motion of isentropes towards higher pressure on the cold poleward side of the 
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baroclinic wave, resulting in downward bulging isentropes, and a motion of the isentropes 
towards lower pressure on the warm equatorward side of the baroclinic wave, resulting in 
upward bulging isentropes over the tropics. This can be observed figure 11.10. 
 This explains the existence of the cold point tropopause (figure 11.14). However, in the 
real non-adiabatic atmosphere polar adiabatic downwelling or tropical adiabatic upwelling, 
forced by the heat and momentum flux by eddies (i.e “planetary wave drag”), will drive the 
temperature above or below the radiatively determined temperature (eq. 11.65), which will 
enhance radiative cooling or heating, and drive the atmosphere towards a stationary state in 
which diabatic cooling or heating counteracts adiabatic heating or cooling at poleward or 
equatorward latitudes (figure 11.11). The residual circulation is then forced by both 
planetary wave drag and diabatic heating/cooling. The interpretation of [va]r and [ω]r as the 
horizontal and vertical components of the projection onto the zonal mean state of the 
atmosphere of a lagrangian circulation that transports tracers poleward or equatorward is 
then well founded. This is the stratospheric circulation that Alan Brewer proposed in his 
attempt to explain the low water vapour content of the stratosphere (figure 11.14). His 
explanation was as follows: 
 
“The observed distributions can be explained by the existence of a circulation in which air enters the 
stratosphere at the equator, where it is dried by condensation, travels in the stratosphere to temperate 
and polar regions, and sinks into the troposphere. The sinking, however, will warm the air unless it is 
being cooled by radiation and the idea of a stratosphere in radiative equilibrium must be abandoned. 
The cooling rate must lie between about 0.1 and 1.1 °C per day but a value near 0.5°C per day seems 
most probabale. At the equator the ascending air must be subject to heating by radiation. 
 The circulation is quite reasonable on energy considerations. It is consistent with the existence of 
lower temperatures in the equatorial stratosphere than in the polar and temperate regions, and if the 
flow can carry ozone from the equator to the poles then it gives a reasonable explanation of the high 
ozone values observed at high latitudes. The dynamical consequences of the circulation are not 
considered. It should be noted that there is considerable difficulty to account for the smallness of the 
westerly winds in the stratosphere, as the rotation of the earth should convert the slow poleward 
movement into strong westerly winds”.11 
 
The last point, which was raised by Brewer, kept him and his colleagues busy for about 3 
decades after 1949. This resulted in the quasi-geostrophic residual circulation theory, which 
is explained in this and the previous sections (the “TEM”-theory). The “smallness of the 
westerly winds” is explained in this theory by introduction of the concept of  “wave-drag”. 
The complex nonlinear interaction between dynamics and diabatic heating (radiative as well 
as latent) is the fascinating topic of the following chapter. 
 
 
11.9 Planetary wave drag and the eddy flux of potential vorticity 
 
One of the attractive features of the TEM-equations (11.64-65) is that the eddy term occurs 
explicitly only in the momentum equation (11.64) in the form of the EP-flux divergence. 
However, the physical interpretation of this term as a manifestation of “planetary wave 
drag” is rather unsatisfactory. It is easy to understand that eddy momentum flux divergence 
can be associated with a force that acts on the zonal mean flow. However, it is difficult to 

                                                
11 Brewer, A.W., 1949: Evidence for a world circulation provided by the measurements of helium and water 
vapour distribution in the stratosphere. Q.J.R.Meteorol.Soc., 75, 351-363. 
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imagine exactly how eddy sensible heat fluxes could have an identical effect. In this section 
it is shown that EP-flux divergence can be associated with an eddy flux divergence of zonal 
mean potential vorticity (PV). From PV inversion (chapter 7) we can understand the 
consequences of rearrangements of zonal mean PV on the zonal mean balanced zonal flow. 
The demonstration is given for the quasi-geostrophic case. 
 We start by repeating the quasi-geostrophic PV-equation (11.7): 
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Taking the zonal mean of this equation (section 11.4) yields 
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(the zonal average of the meridional component of the geostrophic velocity is equal to zero; 
see eq. 11.34). In eq. 11.77 [q] is the zonal average quasi-geostrophic potential vorticity: 
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And q* is the departure from the zonal average quasi-geostrophic potential vorticity: 
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The eddy potential vorticity flux is 
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Assuming that 
 

€ 

f0v* =
∂Φ*
∂x

 and  f0u* = −
∂Φ*
∂y

 ,        (11.81) 

 
we arrive at (see Box 11.2) 
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Since (eq. 11.2 and eq. 1 of Box 9.1) 
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Box 11.2. Derivation of eq. 11.82 
 
The eddy-potential vorticity flux is 
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Assuming that 
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this becomes 
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which becomes 
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The first term on the r.h.s. of this equation is zero, while the second term becomes 
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with (see eq. 11.81) 
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or, employing the same trick as in eq. 6, 
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so that 
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With (2) we obtain the final result (eq. 11.82): 
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we may state that 
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This important equation was first derived by John Green (1970)12. Eq. 11.83 states that the 
divergence of the EP-flux vector is identical to an eddy flux of potential vorticity. EP-flux 
divergence can be interpreted both as a force per unit mass and as a meridional flux of 
potential vorticity (eqs. 11.66 and 11.83). Although the interpretation of EP-flux 
divergence as a force (manifest as “wave-drag” in the stratosphere) is very useful, as we 
shall see in chapter 12, the interpretation of EP-flux divergence as a meridional flux of 
potential vorticity is dynamically more fundamental. In an atmosphere, which is in thermal 
wind balance, potential vorticity is “connected” to the wind by “PV-inversion” (Box 11.1 
and chapter 7). Therefore, because non-zero EP flux divergence alters the zonal mean 
potential vorticity, it must also alter the zonal mean zonal wind in an atmosphere, which 
strives towards thermal wind balance. 
 Under not too restrictive circumstances, there exists a straightforward relation between 
the zonal mean meridional eddy flux of momentum and the zonal mean meridional eddy 
flux of absolute vorticity. Neglecting the spherical geometry of the Earth and assuming 
nondivergent isentropic flow, the eddy meridional flux of vorticity is  
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12 See eq. (9) in Green, J.S.A., 1970: Transfer properties of the large scale eddies and the general circulation 
of the atmosphere. Quart.J.R.Met.Soc., 96, 157-185.  
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Averaging this expression over a latitude circle yields 
 

€ 

ζ*v *[ ] = −
∂ u*v *[ ]

∂y
.         (11.84) 

 
This means that  
 

  

€ 

v *q*[ ] =
! 
∇ ⋅
! 
F = ζ*v *[ ] − ∂

∂p
f0
Sp

v *T *[ ]
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟       (11.85) 

 
The last term on the r.h.s. of eq. 11.85 represents the contribution of the eddies to the flux of 
mass. This can be seen by writing the above equation, using eq. 11.62, as follow. 
 

€ 

v *q*[ ] = ζ*v *[ ] − ∂
∂p

f0
Sp

v *T *[ ]
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ζ*v *[ ] − f0 va[ ]r − va[ ]( )   (11.86) 

 
The term, 

€ 

f0 va[ ]r − va[ ]( ) , is proportional to the meridional poleward eddy flux of mass. 
Therefore, eq. 11.86 reveals that an equatorward eddy flux of quasi-geostrophic potential 
vorticity (

€ 

v *q*[ ]<0), which leads to a reduction of quasi-geostrophic potential vorticity 
over the polar cap, is associated with an equatorward eddy flux of quasi-geostrophic 
vorticity (

€ 

ζ*v *[ ]<0) and/or a poleward eddy flux of mass 

€ 

f0 va[ ]r − va[ ]( )>0. This is 
consistent with the fact that a negative polar cap potential vorticity anomaly should coincide 
with a negative vorticity anomaly and a positive mass anomaly (section 7.5). 
 Let us imagine a region in the upper troposphere in the middle latitudes of the northern 
hemisphere, where   

€ 

! 
∇ ⋅
! 
F < 0 , i.e. a region where the meridional flux of potential vorticity is 

negative (eq. 11.83), which implies an equatorward flux in the northern hemisphere. Let us 
assume that this equatorward flux of potential vorticity is maximized at a latitude of, say, 
45°. On the poleward side of this latitude eq. 11.77 becomes (using eq. 11.83) 
 

  

€ 

∂ q[ ]
∂t

= −
∂
∂y
! 
∇ ⋅
! 
F < 0,         (11.87a) 

 
while on the equatorward side of this latitude we have 
 

  

€ 

∂ q[ ]
∂t

= −
∂
∂y
! 
∇ ⋅
! 
F > 0.         (11.87b) 

 
This will lead to a reduction of the meridional PV-gradient, i.e. a negative zonal mean PV-
anomaly poleward of a positive zonal mean PV-anomaly. This is observed almost 
permanently in the lower stratosphere, between p=100 hPa and p=50 hPa, or between θ=380 
K and θ=550 K in the northern hemisphere winter (figure 7.7). This layer is is referred as 
the “surf-zone”. From what we have learned about the character of the solution the PV-
inversion equation (chapter 7) we may tentatively conclude that the reduced meridional PV-
gradient in the surf zone will translate into a reduced zonal mean zonal geostrophic wind in 
the surf zone. In other words the equatorward meridional flux of PV, due to the action of 
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planetary waves, leads to a reduction of the eastward zonal mean geostrophic zonal wind. It 
is as if eddies exert a drag on the zonal mean flow. Hence the term “planetary wave drag” is 
used as a powerful metaphor in our communication about the influence of zonal 
asymmetries on the zonal mean zonal geostropic wind. 
 Normally, the EP-flux vectors point upwards and dominantly towards the equator 13. 
However, sometimes EP-flux vectors tend to converge towards the polar stratosphere. 
Anomalously convergence of EP-flux vectors over the polar stratosphere, which is 
associated with an anomalous equatorward flux of PV, is associated with the occurrence of 
Sudden Stratospheric Warmings (SSW) (section 1.28) in which the cyclonic polar vortex is 
destroyed and replaced by an anticyclonic polar vortex. 
 

 
 
FIGURE 11.15. Composites for periods of high and low Northern Annular Mode (NAM)-index and their 
difference (left, centre and right) during the December to March period. Upper panels: zonal wind composites. 
Red contours correspond to positive values of [u]. Lower panels: EP-fluxes and their divergence for the sum of 
zonal wave numbers 1 to 3. Red contours correspond to positive values of EP-flux divergence. Source: 
Hartmann, D.L. J.M. Wallace, V Limpasuvan, D.W.J.Thompson and J.R. Holton, 2000. Can ozone depletion 
and global warming interact to produce rapid climate change? PNAS, 97, 1412-1417. 
 
 A clear relation exists between the meridional direction of EP-flux vectors and the 
Northern Annular Mode (NAM)14 (figure 11.15). During the negative phase of the NAM, 
when sea level pressure is anomalously high over the Pole and anomalously low in the 
subtropics, EP-fluxes are directed more strongly toward the North Pole than during the 
positive phase of the NAM. This is consistent with the observation that SSW’s occur more 
often during the negative NAM-phase. During a high positive phase of the NAM, Rossby 
waves seem to propagate into the subtropical jet, i.e. EP fluxes emanating from the middle 
latitudes are directed upward and equatorward, thus weakening the jet by planetary wave 
drag. Consistent with this we observe (figure 11.15) that the composite subtropical jet in the 
high positive NAM-phase is weaker than the composite subtropical jet in the low negative 
NAM-phase. 

                                                
13 See McIntyre (1982) and McIntyre and Palmer (1982) in the list of articles at the end of this chapter.  
14 See section 1.27 for a description of the Northern Annular Mode. 
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FIGURE 11.16. Maximum value of the daily mean zonal mean zonal wind in the subtropics at θ=350 K (blue 
line) and the daily mean NAM-index (according to the definition of Li and Wang; see section 1.27) during the 
winters of 2006-2007 (upper panel) and 2009-2010 (lower panel). Negative values of the NAM index are 
usually associated with appearance of “blocking” anticyclones at high latitudes, especially over Scandinavia 
and Alaska). Wind data are based on the 6-hourly ERA-Interim reanalysis (http://data-
portal.ecmwf.int/data/d/interim_full_daily). 
 
 Figure 11.16 illustrates the remarkably strong negative correlation, even on the time 
scale of days, between the strength of the subtropical jet and the NAM-index. The theory, 
described in section 11.3, indicates that upward propagation of Rossby waves is hindered 
when the eastward zonal mean zonal wind velocity exceeds some critical value (eq. 11.17). 
In the light of this, we might hypothesize that upward and poleward propagation is preferred 



 

 

37 

during the negative phase of the NAM over upward and equatorward propagation (into the 
subtropical jet) because the zonal mean zonal wind velocity in the subtropical jet exceeds 
this critical value during this phase of the NAM. Moreover, this situation is advantageous 
for maintaining a strong subtropical jet and and will thus prolong  the negative NAM-phase. 
This might explain the remarkably long time scale of the NAM (weeks to months), as is 
illustrated in figure 11.16.  
 
 
 
PROBLEM 11.4. Potential vorticity distribution in the winter polar vortex  
Using the ERA-Interim reanalysis data (http://apps.ecmwf.int/datasets/data/interim-full-
moda/levtype=pt/ ), of monthly mean potential vorticity on θ=600 K, construct a covariance 
matrix of the zonal mean potential vorticity for this isentrope, similar to the covariance 
matrix due to Li and Wang  (J. Li and J.X.L. Wang, 2003: A modified zonal index and its 
physical sense. Geophys.Res.Lett., 30, 1632) (http://ljp.gcess.cn/dct/page/65607). Define an 
index, which is a measure of a coherent extra-tropical oscillation in zonal mean potential 
vorticity on this isentrope, similar to the oscillation in sea level pressure that was identified 
by Li and Wang, leading to their definition of the sea-level NAM-index. What physical 
processes does this index reflect? Investigate the relation between the monthly NAM-index 
of Li and Wang and your index for the northern hemisphere winters of 2006-2007 and 2009-
2010. 
 
PROBLEM 11.5. The major Sudden Stratospheric Warmings of the winters of 1984-
1985, 2008-2009 and 2017-2018   
Based on the ERA-Interim reanalysis (http://apps.ecmwf.int/datasets/data/interim-full-
daily/levtype=pl/ ), compute both components of the EP-flux vector (every 6 hours) at 100 
hPa averaged over the latitudes, 40-80°N (a measure of the intensity of middle-latitude 
planetary wave propagation into the stratosphere and towards the pole) and investigate its 
relation with the major stratospheric warmings (SSW) of January 1985, January 2009 and 
February 2018. The SSW is reflected in the average temperature and in the average potential 
vorticity over the polar cap (north of 60°N) at 10 hPa, and also in the zonal mean zonal wind 
at 60°N.  
 
PROBLEM 11.6. Northern Annular Mode during the winters of 2006-2007 and 2009-
2010  
Investigate the relation between both components of the EP-flux vector at 100 hPa at 60°N, 
during the winters of 2006-2007 and 2009-2010 and the daily mean NAM-index of Li and 
Wang (problem 11.4). Make a graph of both quantities. Discuss the characteristics of these 
two northern hemisphere winters. Interpret your result.  
 
PROBLEM 11.7. Cold tropical tropopause 
Temperatures at the tropical tropopause at about 100 hPa, which are approximately the 
lowest measured anywhere below the stratopause (figure 12.1), exhibit a yearly cycle with 
lowest values observed in January or February and highest values observed in July or 
August. Demonstrate this by constructing a Hovemoller plot of the zonal mean, monthly 
mean temperature at 100 hPa for the years 1979-2015, based on the ERA-Interim reanalysis 
(http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/ ). Explain the yearly cycle 
(see the paper by Yulaeva et al., 1994, listed at the end of chapter 12) and investigate trends 
in the data. 
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ABSTRACT OF CHAPTER 11 
 

Chapter 11 introduces the quasi-geostrophic potential vorticity, the index of refraction 
for Rossby wave propagation in the meridional plane, the Eliassen-Palm flux (as a 
diagnostic of the effect of vertical and meridional planetary wave propagation on the zonal 
mean zonal flow), the idea that waves may induce both an acceleration and a deceleration of 
the zonal mean zonal flow (in the latter case this effect of waves on the zonal mean zonal 
wind is referred to as planetary wave drag), the Eulerian mean circulation as a model of the 
well-known mid-latitude Ferrel circulation and the transformed Eulerian mean 
meridional circulation as a model of the actual net meridional (zonal-averaged) flux of heat 
and other conserved quantities. The latter model appears to be useful when diabatic response 
to wave drag is taken into account, in which case the lagrangian meridional circulation is 
interpreted as the “diabatic circulation”.  
 Assuming that the zonal mean atmosphere remains in thermal wind balance at all 
times yields an equation for the zonal mean meridional circulation (the Kuo-Eliassen 
equation). The Eulerian version of this equation describes the Ferrel circulation. Its 
solution reveals that the Ferrel circulation is forced by eddy meridional fluxes of heat and 
momentum and by diabatic heating. The “transformed Eulerian” version of this equation 
describes the Brewer-Dobson circulation and, thus, encompasses the meridional transport 
of mass by eddies. The solution of this equation reveals that the meridional circulation of 
mass is upward in the tropics and downward in over the Polar cap. Therefore, air is cooled 
adiabatically in the tropics and is heated adiabatically over the poles. This explains the 
existence of the cold point tropical tropopause. 
 Finally, it is shown that the divergence of the Eliassen-Palm flux can be identified with 
the isobaric eddy meridional flux of quasi-geostrophic potential vorticity. This 
interpretation of the effect of waves on the zonal mean state of the atmosphere, which is 
probably more fundamental than the interpretation in terms of wave drag, will be elaborated 
upon further in chapter 12. 
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